
Novel spectrograph/radiometer for cloud top height measurement

using three complementary techniques

Hongwoo Park', Peter F. Soulen "b, and Coorg R. Prasad c 3_" 2/

"NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

bjoint Center for Earth Systems Technology:

University of Maryland Baltimore County, Baltimore, MD 21250 USA

CScience & Engineering Services, Inc., 4032 Blackburn Ln., Burtonsville, MD 20866 USA

ABSTRACT

A proof-of-concept (POC) instrument system to measure cloud top height from space using three complementary

techniques is presented. These techniques use measurements of l) thermal infrared OR), 2) molecular oxygen "A" band
absorption, and 3) filling-in of Fraunhofer lines (the Ring effect), respectively. Combining three techniques is achieved

with a single grating spectrograph with ban@ass and order sorting filters by measuring 11 pm radiation flora the zeroth

order of the grating for the IR, 750-780 nm radiation from the first order for the "A" band absorption, and 390-400 nm

radiation from the second order for the Ca K and H Fraunhofer line filling-in effect. The POC system and its

measurement results with the POC system are described.
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1. INTRODUCTION

Cloud top height is one of the cloud parameters needed in the study of the earth's climate system. More than half of the
earth's sm'face is covered by clouds, which reflect incoming radiation from the sun to the earth, and block outgoing

radiation from the earth to space, thus modulating the energy balance of the earth and its atmosphere 1"2o. The study by
Ohring and Alder 4 is one of the examples which shows the importance of cloud top height. Their modeling study

estimates that an increase in cloud height of 1 km would result in an increase in surface temperature of 1.2 K.

Several methods have been proposed to measure cloud top height fi'om space. These methods use thermal radiation from

cloud top 5'6, molecular oxygen "A" band absorption 7's'9"t°a I, Fraunhofer line filling-in effects 12"t3, stereo-viewing 14, and
ranging with a lidsr ts, respectively. The thermal IR technique measures the cloud top temperature either from radiance

at the atmospheric window near 11/am or from radiances at CO2 absorption bands. The cloud top height is inferred from

the measured temperature. The molecular oxygen "A" band technique uses observations of backscattered sunlight m the

wavelength range of 750 - 780 nm. The atmospheric absorption column depth above the cloud is used to deduce the

cloud top height The third technique uses the Fraunhofer line filling-in effect (also called the Ring effect) at the Ca H
and K lines near 390 - 400 run. The Fraunhofer line is filled-in by atmospheric Rayleigh scattering because rotational

Raman scattering, a small fraction of the Rayleigh scattering smears the Fraunhofer lines in the solar spectrum. The

scattering column above the cloud is estimated from the amount of filling-in of the ?raunhofer lines in the earth radiance.
The filling-in amount is obtained by comparing the earth radiance spectrum with the extraterrestrial solar spectrtan. In

the ,ncrco-viewing technique, a cloud is observed from two platforms and the cloud top height is determined from the

altitudes of the two platforms and their viewing geometry, ha the lidar technique, a direct ranging is used to obtain the
cloud height or vertical distribution.

The proposed technique in this paper is to combine the first three techniques described above in one instrument since
none of the above techniques is perfect alone. The thermal IR technique has been used operationally in weather

satellites, but may not be used for an isothermal atmosphere or for convective clouds, which are not in thermal
equilibrium with the atmosphere. Satellite sensors employing the molecular oxygen "A" band just began to flyl*.l 7. This

technique requires an accurate correction t'ornon-ox'ygen absorption at the cloud boundary is, which may hinder the

accuracy of the retrieval. The Fraunhofer line filling-in effect technique does not suffer from problems of the thermal IR

and the molecular oxygen "'A" band techniques, but requires an instrument of high spectral resolution to provide



sufficient sensitivity. The stereo-viewing technique amy not be practical since it would require two geostationary
sateUites, with their coverage limited to within 60° of latitude. The lidar technique provides the most accurate and direct
measuremen_ of cloud top height. However, it has not been flown on satellites since the requirements of power and the
size of the light collecting telescope are prohibitive.

This work studies the feasibility of combining three techniques by building a proof-of-concept (POC) insmament system.
This paper describes the POC system and presents preliminary test and measurement results with the system.

2. BASELINE INSTRUMENT CONCEPT

Figure 1 shows a schematic of the instrument concept in which three different spectral ranges for three different
techniques can be measured simuitaneously. This is achieved with a grating spectrograph/radiometer. Zeroth order
radiation from the grating is imaged onto an IR detector with an IR filter and lens assembly. The second order of the 390
- 400 nm radiation happens to be close to the "A" band wavelength range. Long and short bandpass filters are used to
sort the spectral orders. The lenses shown in Figure I are symbolic to represent the objective, collimating, and imag/ng
optics.
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Figure I. A schemadc of baseline instrument concept. Lenses are symbolically used to represent objective, collimating,
and imaging optics.
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3. PROOF-OF-CONCEPT INSTRUMENT S_STEM

A proof-of-concept instrument has been built with an off-the-shelf commercial spectrograph -Ihc -;pcctrogaph is a f/'3.7

cross Czerny-Turncr bpe wtth 120 rrun focal length. The grating in the spectrograph is a ruled grating ,alth 1200
lines/rnrn blazing at 750 nm. Two color glass filters butted together m front of the detector are used to sort the aqxx:tral

orders. The short pass filter has a cut-off near 500 tam and has a transmission of about 70 % at 400 tam. The rejection at
750 - 800 nm is better than I0 3. The long pass filter has a cut-off near 550 nm and has a transmission of nearly 100 %

at 750 - 780 nm The rejection below 500 run is better than 10 "7.A 1024 silicon phottx:litx:le arrav detector is placed at

the focal plane The detector is slightly tilted with respect to the focal plane and the order sorting filters to prevent

internal multiple retlections at the expense of spectral resolution. For the 50/am slit, the nominal spectral resolution is

0.4 run in the fn-st order and 0.2 nm in the second order. The photodiode array has a 25/am pitch between the detector
elements and it has a fill factor of 80 %. Thus there are two data samplings within the spectral resolution. The

spectrograph has been modified such that the zeroth order radiation is passed through an 11.4 _m filter with bandwidth

of 3.2 ,urn, and collected with a ZnSe lens onto a HgCdTe detector, which is cooled with liquid nitrogen in a dewar. A

telescope is optional and used when a smaller field-of-view of the instrument is needed, ha either case, the _e'nt has

an identical t2eld-of-view for all three different spectral ranges. Figure 2 shows a picture of the POC instrument system.

Figure 2 A p_cture of the proof-of-concept instrument _stem. A mirror ts shov,'n in front of telescope to view the zenith
skw. The chopper used in the IR measurement is not shovm in this picture



4.TEST AND MEASUREMENTS WITH THE POC SYSTEM

Since the electronics of the POC system has not been fully integrated, the IR radiometer part was tested separately.

Figure3 shows thetestsetupfortheIR radiometer.The targetsused fortestingtheIR were a human hand,a blackspray

paintedhoneycomb structure,and an aluminum plate.Liquidmtrogenwas pouredontothehoneycomb structureto

simulatea temporarycoldtarget.The chopperwas operatedat940 [--[zand thetimeconstantofthelock-inamplifier

Jt_dTe Oe_ocler4)sww

Lm_k-_

Figure 3. The IR radiometer test setup.

was set to be 1 second. The signal measured with the hand was in the order of 6 mV relative to that with the honeycomb

structure cooled with liquid nila'ogcn whilethemeasured noise was less than 0.01 mV. The signalsmeasured with the

room tcmpcrmm_ aluminium and the honeycomb target were almost identical and were about 4 mV relative to that with

the liquid nitrogen cooled honeycomb structure. This result was in reasonable agreement with the estimated signal-to-
noise (S/N) ratio of 1000 for a 330 K blackbody radiance source.

FigureIshows thesetupforthesky radiancemeasurement.To measurethesolarspectralirradiancereachingthe

ground, the mirror in the Figure 1 setup is replaced by a BaSO4 diffuser plate. Because the illumination by diffuse sky
radiance on the diffuser is significant, the ditRLscradiance contribution was measured by blocking the direct illumination,
and was subtracted to obtain the irradiance by direct solar iUummation, as in Bigger et al. 19

Figure 4 shows the measured sky spectruna, in arbitrary units. The spectrum for wavelengths longer than 775 nm is

second order, so the truc wavelength is half the value of the scale. The feature duc to absorption by the molecular

oxygen "A" band is identified near 760 am. The Ca K and H Fraunhofer lines are also clearly identified at 393 am (786
am in the scale of Figure 4) and at 397 am (794 am in Figure 4), respectively. Figure 5 shows the spectrum of the solar

spectral irradiance at the ground. The molecular oxygen "A'" band and the Ca K and H Fraunhofer lines can be

identified in this figure as well.
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Figure 4. The zenith sky radiance specUxun

Figure 6 shows the ratio of the zenith sky specman to the solar spectrum at the ground. The features obsexved at 393
nm and 397 nm are due to the Ring effect at the Ca K and H Fraunhofer lines. The magnitude of the observed Ring
effect is about 5 times larger than the one observed fi'om Nimbus-7 SBUV t:'t3_. This result is expected since the

spectral resolution of the POC system is 5 times better than that of SBUV. Also a feature like a Ring effect is observed
at the "A" band. Care must to be taken in interpreting this feature. If there is an optical path difference between observed

sky radiance and measured solar h-radiance, such an apparent feature can be present. About 80 % of the feature at the

"A" band in Figure 6 is due to the optical path difference and 20 % is due to the Ring effecL The Ring effect in the "A"
band has been identified from near simultaneous measurements of the sky radiance and the ground solar h-radiance. This

result will be reported in a separate publication.

5. SUMMARY AND CONCLUSIONS

The fabricated proof.of-concept (PC)C) spectrograph/radiometer system demonstrates that radiation fi'om three spectral

ranges corresponding to three different cloud top height measurement techniques can be measured with one compact
instrument. The higher speca'al resolution at the Ca K and H lines makes the Ring effect technique more sensitive and

competitive with other techniques. The POC system provides a complete profile of oxygen "A" band absorption which

can be used to check the seLf consistency of the "A" band technique. The Ring effect at the molecular oxygen "A" band
has been positively observed when the source of radiation at the "A" band is molecular scattering. In an analysis of

radiation ass(_iated with molecular scattering at the "A" band, rotational Raman scattering, which causes the Ring

effect, should be considered. The POC needs improvement so that it is not sensitive to polarization in the ultraviolet. A

tuning fork chopper with a pseudodepolarizer may fulfill all three measurement requirements when a proper electronic

gating is used for the visible and near IR detector integration.
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Figure 5. The solar specb'tm3at the ground
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Figure 6. The ratio of the sky radiance spectrum to the solar spectrum at the ground



ACKNOWLEDGEMENTS

This work was supported by the NASA Goddard Space Flight Center Director's Discretionary Fund (DDF).

REFERENCES

I. V. Ramanathan,"The roleoftheEarthradiationbudgetstudiesinclimateand generalcirculationresearch",J.

Geophys. Res., 92, 4075-4095, 1987

2. V. Ramanathan, E. J. Pitcher, R. C. Malone and M. L. Blackmon, "The response of a spectral general circulation
model to refinements in radiative processes", ,/. Atmos. Sci., 40, 605-630, 1983

3. V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad and D. Hartman, Science, 243,
57-63, 1989

4. O. Ohrin8, and S. Adler "Some ex'periments with a zonally averaged climate model', J. Atmos. Sci., 35, 186-205,
1978

5. W.L. Smith, H. M. Wolf, W. L Jacob, "A regression method for obtaining real-time temperature and geopotential

height profiles from satellite spectrometer measurements and its application to Nimbus 3 SIRS observations', Mon.
Wea. Rev., 98, 604-611, 1970

6. T.H. Vonder Ham" and D. W. Reynolds, "'A bispectral method for inferring cloud amotmt and cloud top temperattwe

using satellite data', Sixth Conf. on Aerospace and Aeronauticai Meteorology, 190 pp, 1974
7. G. Yamamoto, and D. Q. Wark, "Discussion of letter by R. A. I-hnel: Determination of cloud altitude from a

satellite",,/. Geophys. Res., 66, 3596 pp, 1961

8. F. Saledy, I-/. Jacobowitz, and D. Q. Wark, "On cloud-top determination from Gemini-5", J. Atmos. Sci., 24, 63-69,
1967

9. D.Q. Wark and D. M. Mercer, "Absorption in the atmosphere by the oxygen A-band', Appl. Opt., 4, 839 pp, 1965
10. J. Fischer and H. Grassl, "Detection of Cloud-Top Height from Baekscattered Radiances within the Oxygen A Band.

Part 1: Theoretical Study', J. Appl. Meteor, 30, 1245-1259, 1991

11. A. Kuze and K. V. Chance, "Analysis of cloud top height and cloud coverage from satellites using the O: A and B
bands",,/. Geophys. Res., 99, 14,481-14,491. 1994

12. t-L Park, D. F. Heath, and C. L. Mateer, "Possible application of the Fraunhofer line filling in effect to cloud height

measurements", in _hCeteoroiogical Optic& OSA Technical Digest Series, pp. 70-8 I, Opt. Soc. Am., Washington,
D.C., 1986

13. J. Joiner and P. K. Bhartia, "The determination of cloud pressures from rotational Raman scattering in satellite
back.scaRer ultraviolet measurements", J. Geophys. Res., 100, 23,0 !9-23,026, 1995

14. W. E. Shenk, R. J. Holub, and R. A. Neff, "Stereographie cloud analysis from ApoUo-6 photographs over a cloud
front', Bull. Amer Meteor. Soc., 56, 4-16, 1975

15. J. D. Spinhirne, M. Z. l-Iansen and L. O. Caudill, "Cloud top remote sensing by airborne lidar", Appl. Opt., 21,
1564-1571, 1982

16. P. Y. Desehamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J.C. Buriez, and G. Seze, "The POLDER

Mission: Instrument Characteristics and Scientific Objectives". IEEE Trans. Geosc. Rein. Seas. 32, 598-615, 1994

17. J. P. Burrows, M. Buchwitz, M. Eisinger, V. Rozanov, M. Weber, A. Richter, and A. Ladstaetter-Weissenmayer,

"The Global Ozone Monitoring Experiment (GOME): Mission, Instrument Concept, and First Scientific Results",
Proc. 3rd ERS Symposium, Florence ! 997, ESA-SP 414. 1997

18. M. L. Wu, "Remote sensing of cloud-top pressure using reflected solar radiation in the oxygen A-band", J. Appl.
Meteor., 24, 539-546, 1985

19. S. F. Bigger, P. N. Slater, K. J. Thome, A. W. Holmes, and R. A. Barnes, "Preflight solar-based calibration of
SeaWIFS", Proc. SPIE, 1939, 233-242, 1993

20. D. F. Heath, A. J. Krueger, H. IL Roeder, and B. D. Henderson, "The Solar Back.scaRer Ultraviolet and Total Ozone

Mapping Spectrometer (SBUV/TOMS) for Nimbus G", Optical Engineering, 4, 323-33 I, 1975


